Skip to contents

Print the cv.ptLasso object.

Usage

# S3 method for class 'cv.ptLasso'
print(x, ...)

Arguments

x

fitted "cv.ptLasso" object.

...

other arguments to pass to the print function.

See also

ptLasso, cv.ptLasso and predict.cv.ptLasso.

Author

Erin Craig and Rob Tibshirani
Maintainer: Erin Craig <erincr@stanford.edu>

Examples

out = gaussian.example.data(k=2, class.sizes = c(50, 50))
x = out$x; y=out$y; groups = out$group;

cvfit = cv.ptLasso(x, y, groups = groups, family = "gaussian", type.measure = "mse")
print(cvfit)
#> 
#> Call:  
#> cv.ptLasso(x = x, y = y, groups = groups, family = "gaussian",  
#>     type.measure = "mse", use.case = "inputGroups", group.intercepts = TRUE) 
#> 
#> 
#> 
#> type.measure:  mse 
#> 
#> 
#>            alpha overall  mean wtdMean group_1 group_2
#> Overall            543.1 543.1   543.1   477.2   609.0
#> Pretrain     0.0   520.0 520.0   520.0   507.3   532.6
#> Pretrain     0.1   503.9 503.9   503.9   511.5   496.2
#> Pretrain     0.2   468.4 468.4   468.4   449.4   487.4
#> Pretrain     0.3   500.0 500.0   500.0   543.7   456.3
#> Pretrain     0.4   476.7 476.7   476.7   427.1   526.3
#> Pretrain     0.5   456.6 456.6   456.6   439.6   473.6
#> Pretrain     0.6   436.9 436.9   436.9   420.5   453.3
#> Pretrain     0.7   434.7 434.7   434.7   386.6   482.8
#> Pretrain     0.8   474.2 474.2   474.2   421.3   527.1
#> Pretrain     0.9   478.9 478.9   478.9   406.4   551.4
#> Pretrain     1.0   469.7 469.7   469.7   411.4   528.0
#> Individual         469.7 469.7   469.7   411.4   528.0
#> 
#> alphahat (fixed) = 0.7
#> alphahat (varying):
#> group_1 group_2 
#>     0.7     0.6