Package index
-
binomial.example.data() - Simulate input grouped data (binomial outcome) for testing with ptLasso.
-
coef(<cv.ptLasso>) - Get the coefficients from a fitted cv.ptLasso model.
-
coef(<ptLasso>) - Get the coefficients from a fitted ptLasso model.
-
cv.ptLasso() - Cross-validation for ptLasso
-
gaussian.example.data() - Simulate input grouped data (gaussian outcome) for testing with ptLasso.
-
get.individual.support() - Get the support for individual models
-
get.overall.support() - Get the support for the overall model
-
get.pretrain.support() - Get the support for pretrained models
-
makedata() - Simulate input grouped data for testing with ptLasso.
-
makedata.targetgroups() - Simulate target grouped data for testing with ptLasso.
-
plot(<cv.ptLasso>) - Plot the cross-validation curve produced by cv.ptLasso, as a function of the
alphavalues used.
-
plot(<ptLasso>) - Plot the models trained by a ptLasso object
-
predict(<cv.ptLasso>) - Predict using a cv.ptLasso object.
-
predict(<ptLasso>) - Predict using a ptLasso object.
-
print(<cv.ptLasso>) - Print the cv.ptLasso object.
-
print(<predict.cv.ptLasso>) - Print the predict.cv.ptLasso object.
-
print(<predict.ptLasso>) - Print the predict.ptLasso object.
-
print(<ptLasso>) - Print the ptLasso object.
-
ptLasso() - Fit a pretrained lasso model using glmnet.